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Two p r o b l e m s  of convect ive  s tabi l i ty  in a med ium containing set t l ing heavy solid pa r t i c l e s  a re  
d iscussed .  A study is  made of the s tabi l i ty  of s teady convect ive  flow of a medium containing an 
addit ive between ve r t i c a l  p la tes  heated to d i f ferent  t e m p e r a t u r e s  and also of the s tabi l i ty  of a 
f lat  l aye r  of a med ium containing an additive which is heated  f rom below. It is shown that  the 
p r e s e n c e  of se t t l ing solid pa r t i c l e s  has a significant  s tabi l iz ing effect  on convect ive stabil i ty.  

The s tabi l i ty  of i s o t h e r m a l  p l ane -pa ra l l e l  flows of an i n c o m p r e s s i b l e  gas t r anspor t ing  a smal l  amount  of 
solid p a r t i c l e s  was studied in [1-4]. The t r anspo r t i ng  med ium and the addit ive were  cons ide red  as  in te rpene-  
t r a t ing  and in te rac t ing  continuous media;  in te rac t ion  between pa r t i c l e s  was neglected.  A formulat ion of the 
p rob lem of flow s tabi l i ty  based on these concepts  was f i r s t  given in [1] where  s tabi l i ty  of motion in a plane 
ve r t i c a l  channel was cons idered  fo r  a fluid containing an additive. The s tabi l i ty  of convect ive motion of a m e -  
dium t r anspor t ing  a solid addit ive in a l aye r  between ve r t i c a l  p la tes  heated to di f ferent  t e m p e r a t u r e s  was 
studied in [5] where  the se t t l ing of the pa r t i c l e s  was neglected,  as  was the ca se  in [2-4]. 

The ef fec t  of suspended solid pa r t i c l e s  on the equi l ibr ium s tabi l i ty  of a hor izontal  l aye r  of a gas heated 
f r o m  below was  cons ide red  in [6]. Pa r t i c l e  se t t l ing and the d i sp lacemen t  force  acting on the pa r t i c l e s  were  
neglected.  The ex is tence  of t he rma l  equi l ibr ium behveen pa r t i c l e s  and gas was assumed ,  i .e . ,  the s imple  l im-  
iting case  of an infinitely shor t  t e m p e r a t u r e  re laxa t ion  t ime  T T was considered.  Under the assumpt ions  de-  
sc r ibed ,  the e f fec t  of pa r t i c l e s  p re sen t  in a l aye r  reduces  to a m e r e  r eno rma l i za t i on  of the heat  capaci ty  of 
the gas and so to a t r iv ia l  r eno rma l i za t ion  of the Rayle igh  number  also.  

In the following, a study is  made of the ef fec t  on convect ive  s tabi l i ty  of all  f ac to r s  cha r ac t e r i z i n g  the 
added pa r t i c l e s :  the ra te  of pa r t i c l e  se t t l ing  Us, the ve loc i ty  and t e m p e r a t u r e  re laxa t ion  t imes  fo r  the p a r t i -  
c les  (or,  which comes  to the s ame  thing, the i r  s ize ,  density,  and heat  capacity) ,  and the m a s s  concentrat ion a 
of the addit ive.  

1. We cons ider  an i ncom pres s i b l e  fluid containing a cloud of spher ica l  nondeformable  pa r t i c l e s  of 
identical  m a s s  m and radius  r .  The densi ty  Pl of the pa r t i c l e  m a t e r i a l  is much g r e a t e r  than the densi ty  p of 
the t r anspor t ing  medium.  The vo lumet r i c  pa r t i c l e  f rac t ion  is f<< 1 and the re fo re  in te rac t ions  between p a r t i -  
c les  can be neglected.  The m a s s  concent ra t ion  a of the pa r t i c l e s  is not a s s u m e d  smal l  and can r each  a value 
of 0.2. In this case ,  one cannot cons ide r  the Einstein co r rec t ion  to the v i s c o s i t y  of a fluid, which is p r o p o r -  
t ional to the v o l u m e t r i c  concentra t ion f of  an addit ive.  The d i sp lacement  force  act ing on a pa r t i c l e  is  negl igi-  
bly sma l l  s ince i t  is p ropor t iona l  to the ra t io  P / P l .  The pa r t i c l e s  a r e  la rge  enough to exclude par t ic ipat ion in 
Brownian motion;  the re  is no p r e s s u r e  a s soc i a t ed  with the pa r t i c l e  cloud. In teract ion force  between phases  
during the i r  r e l a t i ve  motion is desc r ibed  by Stokes '  law. 

Equations desc r ib ing  the behavior  of a med ium containing a cloud of solid pa r t i c l e s  were  given in [7, 8]. 
Based  on those equations,  equations were  obtained [5] in the Bouss inesq  approximat ion  [9] for  the f r ee  con- 
vect ion  of an i n c o m p r e s s i b l e  med ium with a heavy additive: 

Ou/Ot -~ (uv)u = - -  VP/P -~- v A u  ~, a/~4(up - -  u) - -  (i -~ a)g~T ,  (1.1) 
OUp/Ot ~ ( (Up + Us)V)U p :=  - -  ( t / T ~ ) ( t l p  - -  U),  
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cOT/Ot + uvT = z A T +  ( a b / T r ) ( T p -  T), 

OTv/Ot § (up ~- u,)VT p = - -  ( I / T r ) ( T  v - -  T), 

divu = 0, ON~cOt ~ div[N(uv + u~)l = 0, 

T.~ = m / 6 ~ r v p ,  Tr = rnb /4~rzp ,  u~ : mg/6~rvp, 

a = pp/p, b : C1/C, pp ----- N m ,  

where  u is veloci ty;  T is t e m p e r a t u r e ;  p is  the p r e s s u r e  of the fluid m e a s u r e d  with r e s p e c t  to the hydros ta t ic  
p r e s s u r e  r e n o r m a l i z e d  because  of the p r e s e n c e  of set t l ing par t i c les ;  e is  the hea t  capac i ty  of the fluid a t  con-  
s tant  p r e s s u r e ;  fl, v, and X a r e  the coeff ic ient  of volume expansion of the fluid, i ts  k inemat ic  v i scos i ty ,  and 
t h e r m a l  diffusivity;  g is  the acce l e r a t i on  of f r e e  fall .  Quanti t ies  with the subsc r ip t  p r e f e r  to the cloud of p a r -  
t ic les ,  where  Up is  the ve loc i ty  acqu i red  by the p a r t i c l e s  as  a r e su l t  of the i r  in te rac t ion  with the moving  fluid 
m e a s u r e d  with r e s p e c t  to the r a t e  of pa r t i c l e  set t l ing Us; e 1 is the heat  capac i ty  of the pa r t i c l e  m a t e r i a l ;  N is 
the number  of pa r t i c l e s  p e r  unit  vo lume.  

The quanti t ies  ~T and ~'v have the d imens ional i ty  of t ime  and a re ,  r e spec t ive ly ,  t h e t i m e  requ i red  for  the 
t e m p e r a t u r e  d i f fe rence  between fluid and p a r t i c l e s  to d e c r e a s e  by a f ac to r  e and the t ime  requ i red  fo r  the v e -  
loci ty  of the p a r t i c l e s  re la t ive  to the fluid to d e c r e a s e  by a f ac to r  of  e in compar i son  with i ts  or iginal  value.  

w 2. We cons ide r  convect ive  motion of a fluid containing an addit ive in a plane l aye r  between infinite 
pa ra l l e l  ve r t i ca l  s u r f ace s  a t  x = *h ,  which a r e  main ta ined  a t  the constant  t e m p e r a t u r e s  - |  and | r e spec t ive ly .  
The p a r t i c l e s ,  the concent ra t ion  of which is uni form,  move  through the fluid. 

We obtain a s t e a d y - s t a t e  solution of the equation s y s t e m  (1.1) desc r ib ing  p l ane -pa r a l l e l  convective m o -  
tion in such a s t ruc tu re ,  

u x :  u~ = 0 ,  u~ = uo(x)~ To = To(x), Pc =Pc(Z), (2.1) 
u,.,~ = uv, J = O, upz = Upo(X), Tvo = rpo(x) ,  N O = const 

[the subsc r ip t  0 denotes  a s t e a d y - s t a t e  solution of  the s y s t e m  (1.1)]. 

Using Eqs.  (2.1), we obtain f r o m  (1.1) the s y s t e m  of equations 

vd~'uo/dx 2 ~,  (1 ~ a)g~T,~ = ( i lp )dpo ldz  =: c, u~o := Uo; (2.2) 

d"To/dx  ~ = 0 ,  Tpo = To, (2.3) 

where  c is the constant  of  separa t ion  of va r i ab l e s .  To de t e rmine  u0, T0, and P0, we used the boundary con-  
dit ions 

u o ( •  ) = 0, To(+ h) = ~- 0 (2.4) 

and the c losure  condition for  convect ive  flow 

h 

~ uodx = 0. (2.5) 
- - h  

We obtain f r o m  Eqs.  (2.2)-(2.5) the d is t r ibut ions  of ve loc i t i es  and t e m p e r a t u r e s  of the fluid and par t i c le  
cloud ove r  a sec t ion  of the l ayer :  

Uo = (t ~ a)(g[~Oh~'/6v)(x3/h 3 - -  x /h) ,  (2.6) 

Uvo = Uo -4-u.~, To = Tvo = - - ( O / h ) x .  

As is c l e a r  f r o m  Eqs.  (2.6), the p r e s e n c e  of added pa r t i c l e s  leads to r eno rma l i za t ion  of the ve loc i ty  
p rof i l e  of the fluid in compar i son  with the ca se  of a fluid without an addit ive [9]. 

w 3. We inves t iga te  the s tabi l i ty  of the s t e a d y - s t a t e  mot ion of a med ium containing a heavy additive as 
defined by Eqs.  (2.6). To do this,  we cons ider  the pe r tu rbed  fields for  veloci ty ,  t e m p e r a t u r e ,  p r e s s u r e ,  and 
number  of pa r t i c l e s  p e r  unit vo lume,  u0+u , T0+T  , Up0+Up, Tp0+ Tp, p0+p, and N0+N , where  u, Up, T, Tp, p, 
and N a r e  sma l l  pe r tu rba t ions .  

We wr i te  the equations f o r  the pe r tu rba t ions  in d imens ion less  form,  us ing  the following units of  m e a -  
su rement :  d is tance  h, t ime  h2/v, ve loc i ty  v / h ,  p r e s s u r e  p t , 2 / h  2, and t e m p e r a t u r e  | L inear iz ing  ove r  the 
pe r tu rba t ions ,  we obtain f r o m  Eqs.  (1.1) 
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Ou/Ot q- (uv)u o + (UoV)U = -- VF + Vu+ 7GrT q- (a/z,,)(u~,--u); 

O u v /O t  + (upv)uo § ((uo § uDV)% = -- (l/r,.)(u, -- u); 
O T /O t  + uvT o + uovT= (t/Pr)vT + ( a b / r v ) ( T  1, - -  T); 

O T p /O t  -Jr- upvT o + (u o --]- u,)vT p : -- ( I / ' cT ) (T  1, - -  T); 

divu = O; O N / O t  T' div[N(uo + u~). -7' ~u ] : :  O, 

u, -- --Ga%v, u0 = (Gr/6)(x :~ -- x)7, 7% . . . . . .  ~:, 

% : (2 /9) (r /h)"- (p t /9) ,  XT : ( 3 / 2 ) b P r z , .  

Ga -: gh:Vv ~, Gr -= (1 -i- a)g~JOh:Uv", Pr !-v'7.. 

(3.D 

where Ga, Gr, and P r  are  the Galileo, Grashof,  and Prandt l  numbers;  r v and T T are  now dimensionless  r e -  
laxation t imes;  y is a unit vec to r  di rected ve r t i ca l ly  upward. 

As in the case of a pure fluid [9, 10], one can show for a medium containing an additive that the problem 
of stabil i ty with respec t  to spatial per turbat ions  reduces  to the cor responding  problem for  plane perturbations.  
Plane per turbat ions  a re  more  dangerous in the case  of ver t ica l  orientation of the layer,  i.e., lower Grashof 
numbers  a re  associa ted  with them. Consequently, it is sufficient to confine the investigation to plane pe r tu r -  
bations in a study of stability. 

We cons ider  plane normal  per turbat ions  

u.~ = - -  @ / O z ,  u: : :  0U0x, 
~ ( x ,  z ,  t) = ( r ( x ) e x p [ i k ( z  - -  c t )] .  T ( x .  z,  t) = O ( x ) e x p [ i k ( z  - -  ct)L (3.2) 

uv.~.(x , z, t) = v p x ( x ) e x p [ i k ( z  - -  c t )] .  up:(.r, z, t) == ~ ,v~ (x )exp[ i k ( z  - -  c O L  

where r is a s t r eam fianction; ga, 0, Vpx, andvpz a re  the amplitudes of the per turbat ions;  k is a real  wave num- 
ber; C=Cr+iCi is the complex phase veloci ty  of the per turbat ions  (c r is the phase velocity,  c i the decrement) .  

Substituting Eqs. (3.2) into Eqs. (3.1), we obtain a sys tem of amplitude equations (pr imes denote differ-  
entiation with respec t  to x) 

where 

Boundary conditions a re  

ii,r ' v  - 2/~.~,~" + z,.%) - i#(q"- l , .~,i)( , ,~- c) + ( ; r e '  + i#q , ,~'= o; 

I 
p-.~. ( 0 "  - -  1:"-0) - -  i/cO (tt., - -  c) -!- i k q : ] " o : t  - -  O,  

u~ = uo + a(uo § u , - -  c ) / [ l  -~- tkr~ (Uo § u~ - -  c)]; 
u~ = Uo + ab(uo  + u.~ - -  c)/[l -!- i k r r (Uo  + u~ - -  c)l; 

A --~ t _t_ a b / { [ t  + i/;Tr(l/o -i-tt., -- c)][l-~- i/,"CT(U o ~. It s - -  C)]}. 

(3.3) 

(p = q0' - 0 = 0 for x =  • t. (3.4) 

The boundary-value problem (3.3), (3.4) de termines  the spec t rum of charac te r i s t i c  perturbat ions and 
their  decrements .  The complex phase veloci ty  c depends on seven independent p a r a m e t e r s  of the problem: 
the Grashof,  Prandtl ,  and Galileo numbers;  the wave number k; the mass  concentrat ion a of the additive; and 
the relaxation t imes T T and r v. The l imit  of stability for  s teady-s ta te  flow is determined f rom the condition 
c i=0 .  

To solve the resul tant  boundary-value problem, i.e., to determine the decrement  s p e c ~ u m  and the flow 
stabili ty l imits,  the R u n g e - K u t t a - M e r s o n  method of stepwise integration was used with orthogonalization of 
solutions at each step in the integration [11, 12]. The method used made it possible to c a r r y  out calculations 
to sufficiently large values of the problem p a r a m e t e r s :  Gr ~ 10 2, P r  ~ 10 2, Ga ~ 10 ~. 

w 4. Calculations pe r fo rmed  over  a broad range of values of the Prandtl  number  (10 -2 --< P r  -< 10 2) showed 
that s teady-s ta te  motion of a medium containing an additive [Eqs. (2.6)] has two forms of instability. The f i r s t  
is associa ted  with flow structt tre through the existence of two opposing flows, the interact ion between which 
leads to loss of stability. The second fo rm of instabil i ty is produced by the buildup of thermal  waves in the 
flow at sufficiently large Prandt l  numbers  Pr-> P r ,  (P r ,  ~ 11). 

F o r  values of the l>randtl number less than the cr i t ical  value, P r  < l>r,, the instabil i ty of the s teady-  
state motion of a fluid containing an additive is caused by the lowest modes of hydrodynamic per turbat ions  
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( the rmal  pe r tu rba t ions  become m o r e  dangerous  when l>r > P r , ) .  The ef fec t  of t h e r m a l  fac to r s  on this fo rm of 
ins tabi l i ty  is insignif icant .  Settling p a r t i c l e s  produce  osc i l la t ional  ( traveling) pe r tu rba t ions  and faci l i ta te  
the i r  t r anspor t .  Consequently,  the ins tabi l i ty  a s soc ia t ed  with the lowest  hydrodynamic  modes  of the p e r t u r -  
bations is  osci l la t ional .  The ins tabi l i ty  of s t e a d y - s t a t e  motion of a pure  fluid for  P r  < 11.4 is  a s soc ia ted  with 
monotonic  pe r tu rba t ions  [9, 13] jus t  as  in the ca se  of a fluid containing an addit ive with a set t l ing ra te  that  can 
be neglected in c o m p a r i s o n  with the ve loc i ty  of  s t e a d y - s t a t e  flow of the fluid [5]. Since the ins tabi l i ty  m e c h a -  
n i s m  is  the s a m e  in all three  cases ,  this  f o r m  of ins tabi l i ty  of the mot ion of a med ium containing an addit ive 
can be ca l led  quasimonotonic .  

We cons ide r  quasimonotonic  ins tabi l i ty  of the s t eady - s t a t e  mot ion (2.6). Its l imi t  v a r i e s  l i t t le for  
changes of the Prandt l  n u m b e r  ove r  a wide range  (10 -2 - P r - < 3 0 ) .  The c r i t i ca l  s tabi l i ty  region has a c l ea r ly  
e x p r e s s e d  hydrodynamic  na ture .  

F igure  1 shows the dependence of the m i n i m u m  cr i t i ca l  Gra sho f  number  G r m  on the l>randtl number  for  
the following va lues  of p r o b l e m  p a r a m e t e r s :  a =0.05,  Ga=43,600 (b =2.7, Pl/P =415). Curve 1 co r r e sponds  to 
Tv=0.0049 ( r / h =  0.0073) and curve  2 to ~-v=0.00083 ( r / h = 0 . 0 0 3 ) .  It is c l ea r  that  an i nc r ea se  in pa r t i c le  s ize 
leads  to cons ide rab le  s tabi l iza t ion of flow (curve 2 p rac t i ca l l y  coincides with the co r respond ing  curve  for  a 
pure  fluid [9]). The pe r tu rba t ion  phase  ve loc i ty  Crm (c r < 0) co r respond ing  to the min imum cr i t i ca l  Grashof  
n u m b e r  Gr  m also changes  ins ignif icant ly  as P r  v a r i e s  (Crm ~ -5 .25) .  The c r i t i ca l  wave number  k m c o r r e -  
sponding to G r m  depends sl ightly on Prandt l  number  (km~ 1.15). 

The dependence of the m i n i m um  c r i t i ca l  Grasho f  number  Gr  m on the m a s s  concent ra t ion  a of the ad-  
dit ive turns  out to be l inear .  The number  of  pa r t i c l e s  pe r  unit vo lume i n c r e a s e s  with an i nc r ea se  in a for  
Tv=Const  (r =const ,  Pl/P =const ) ,  i .e . ,  the influence of the additive on flow s tabi l i ty  grows.  The min imum 
c r i t i ca l  Grasho f  num ber  Gr  m i n c r e a s e s  f r o m  500 to 1050 with an i n c r e a s e  in the m a s s  concentra t ion  a f rom 0 
to 0,1; the c r i t i c a l  phase  ve loc i ty  Crm fal ls  f r o m  0 to - 1 2  and k m d e c r e a s e s  l inear ly  f rom 1.42 to 1.00 (Ga= 
43,600, P r  = 0.73, cv =0.0049, r T =  0.0145). The addit ive fac i l i ta tes  diss ipat ion of pe r tu rba t ion  ene rgy  in some 
f requency  range  during the in te rac t ion  of i ne r t  pa r t i c l e s  with ve loc i ty  pulsat ions.  Long-wave per tu rba t ions  
become re spons ib l e  fo r  the c r i t i c a l  region of flow. 

F igu re  2 shows the dependence of the m i n i m u m  cr i t i ca l  Grasho f  number  G r m  and of the c r i t i ca l  wave 
number  k m on the radius  r of the added p a r t i c l e s  (r denotes  the d imens ion less  radius  of the par t ic les )  for  two 
va lues  of the m a s s  concent ra t ion  a of the additive.  Curve 1 co r r e sponds  to a = 0.1 and curve  2 to a = 0.05 for  
Ga=43,600,  P r  = 0.73 (b= 2.7, Pl/P =415). These  va lues  of p rob lem p a r a m e t e r s  co r r e spond  to wood dust in a i r .  
An i n c r e a s e  in the pa r t i c l e  rad ius  r f o r  a = const  leads  to a c l ea r ly  e x p r e s s e d  s tabi l izat ion ef fec t  on flow up to 
a c r i t i ca l  value r .  ~ 0.0079 a f t e r  which the s tabi l iz ing ef fec t  d e c r e a s e s  with inc reas ing  r .  Here  two opposing 
f ac to r s  a r e  compet ing  [2]; i n c r e a s e  in pa r t i c l e  s ize  leads  to additional d iss ipat ion of pe r tu rba t ion  energy,  but 
the number  of p a r t i c l e s  is  reduced  in this case  (a =cons t ,  Pl/P =const) ,  i .e . ,  the i r  influence on flow stabi l i ty  is  
weakened. The nature  of the dependence of the c r i t i ca l  wave number  k m on pa r t i c l e  radius  is evidence that  
s tabi l iza t ion of flow is produced through suppress ion  of dangerous  pe r tu rba t ions  by the pa r t i c l e s .  The cu rves  
�9 re f lec t ing  the dependence of the value of the c r i t i ca l  phase  ve loc i ty  ICrml of the pe r tu rba t ions  on pa r t i c l e  r a -  
dius have a shape s i m i l a r  to the cu rve  fo r  Gr in=  Grm(r)  in Fig. 2. F o r  r = 0.0075, the c r i t i ca l  phase  ve loc i ty  
has the min imum value Crm = - 12.2 (a = 0.1, Ga = 43,600, P r  = 0.73, b = 2.7, p j p  = 415). 
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w 5. We cons ider  esci l la t ional  instabil i ty of s teady-s ta te  motion, i .e . ,  an instabil i ty c rea ted  by the lowest 
the rmal  modes  of per turba t ions  which a re  built up in the flow by thermal  waves.  In con t ras t  to quasimonotonic 
instabil i ty,  osci l la t ional  instabil i ty is essent ia l ly  associa ted  with the nonisothermaI  nature of the flow. In the 
case  of a pure fluid, osei l la t ional  instabil i ty is produced by a pa i r  of complex-conjugate  decrements  [9]. T h e r -  
mal waves which a r e  propagated both upward and downward in the flow with identical  absolutevalues  of the 
phase veloci ty  are  equally possible .  Settling solid par t ic les ,  which produce per turbat ions  that t ravel  down- 
ward along the layer ,  make that d i rec t ion mos t  favorable fo r  the propagation of per turbat ions .  Now the p e r -  
turbat ions t ravel ing  downward have a g r e a t e r  absolute value of the phase veloci ty  than the per turbat ions  t r av -  
eling upward. Inclusion of pa r t i c l e  sett l ing leads to the removal  of the degeneracy  of thermal  decrements .  
In such a case, one cml speak of two neutral curves of oseillational instability corresponding to a pair of the 
lowest thermal decrements. 

As in the case  of a pure  fluid [9, 13], a shift in the fo rm of instabil i ty occurs  when P r  > P r ,  (l>r, ~ 11) 
with the osefl lat ional  per turbat ions  becoming most  dangerous.  

F igure  1 shows the dependence of the minimum cr i t ica l  Grashof  number  Grm on the l>randtI number P r  
(instabil i ty with r e spec t  to osci l lat ional  per turbat ions) .  The problem p a r a m e t e r s  a re  the following: a = 0.05, 
Ga= 43,600, TV=0.00021 (b = 2.7, r=0 .0015,  Pl/P =415, Us= -9 .05) .  Curve 3 cor responds  to a per turbat ion phase 
veloci ty  c r < 0 and curve 4 to c r > 0. As the Prandt l  number  inc reases ,  flow stabil i ty with r e spec t  to osc i l la -  
t ional per turba t ions  d e c r e a s e s  up to P r ~  57 and then begins to increase .  Up to Prandt l  numbers  P r ~  40, p e r -  
turbat ions t ravel ing upward along the l aye r  a re  mos t  dangerous,  and per turbat ions  t ravel ing downward be- 
come m o r e  dangerous when P r  > 40. 

F igure  3 shows the dependence on Prandt l  number  for  the c r i t i ca l  wave number  k m and for  the absolute 
value of the phase veloci ty  Crm. The prob lem p a r a m e t e r  values  co r respond  to those for  curves  3 and 4 in 
Fig. 1. 

The dependence of the c r i t i ca l  numbers  k m and Grm on par t ic le  radius  r is shown in Fig. 4. Curve 1 
cor responds  to negative per turbat ion  phase ve loc i ty  (decrement  v l) and curve 2 to posi t ive phase veloci ty  (dec- 
r em e n t  ~0). Values of the prob lem p a r a m e t e r s  a re  as  follows: a =0.05, Ga=43,600,  P r = 3 0  (pip =415, b=2.7).  
The stabil izing ef fec t  of the additive on the stabil i ty of s teady-s ta te  motion of the fluid inc reases  as par t ic le  
s ize  i nc reases .  The absolute values  of the phase veloci t ies  of per turba t ions  t ravel ing both upward and down- 
ward along the l a y e r  i nc rease  rapidly with inc rease  in r .  It is c l ea r  f rom a compar i son  of Figs.  2 and 4 that 
the added pa r t i c l e s  suppress  the rmal  per turba t ions  considerably  m o re  effectively.  The stabil i ty of s teady-  
s tate  convective motion of a fluid with r e spec t  to qu~simonotonie per turba t ions  can be increased  by a factor  
of 2-2.5 by adding heavy pa r t i c l e s  (a -<0.2) to the flow and by a fac tor  of more  than 10 with r e spec t  to osef l -  
lational per turba t ions .  

A compar i son  of these  resu l t s  with the r e su l t s  of [5] shows that set t l ing par t i c les  produce a cons ider -  
ably g r e a t e r  stabil izing effect  on s t eady-s t a t e  flow of a fluid than suspended par t i c les .  In fact ,  negleet  of pa r -  
t i t l e  set t l ing ra te  in compar i son  with the ve loc i ty  of s teady-s ta te  f low of a fluid is only valid for  sufficiently 
fine par t i e les  of not too g rea t  a densi ty  (with r e sp ec t  to the densi ty  of the t ranspor t ing  medium). Coarse  dense 
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par t i c les  a re  m o r e  iner t  than fine par t ic les ,  and it is impossible  to neglect  their  sett l ing rate.  The par t ic le  
slip ra te  with r e spec t  to the fluid is of the o rde r  of the quantity u s . The resul tant  relat ive motion of fluid and 
pa r t i c l e s  leads to additional dissipation of per turbat ion energy  in compar i son  with the case of suspended p a r -  
t i t l es .  

w 6. We cons ider  a hor izontal  plane l ayer  of incompress ib le  fluid o r  gas bounded by infinite solid su r -  
faces  at  z=  ~ i .  The l ayer  is heated f rom below. Par t i c les ,  the concentrat ion of which is uniform (N0=const) , 
enter  the layer  through the upper surface.  The par t ic les  settle and therefore  there  is t r ansve r se  motion of the 
additive with a uniform ver t ica l  veloci ty  u s in the unperturbed state in the layer.  We assume that heating of 
par t ic les  at the lower surface does not occur .  In fact,  the volumetr ic  concentrat ion of the additive is f<< I,  and 
the change in layer  thickness because of sett led par t ic les  is insignificant. One can also assume that the lower 
bounding sur face  is permeable  for the par t ic les .  

We determine  s teady-s ta te  distr ibutions of the t empera tu res  T o of the gas and Tp0 of the par t ic le  cloud 
in the absence of convective motion in this two-phase  sys tem [the subscr ip t  0 now denotes a s teady-s ta te  so-  
lution of the sys tem ( i . i )  with u 0 = 0]. To accompl ish  this, it is n e c e s s a r y  to solve the dimensionless  equations 
of thermal  conductivity obtained f rom the appropr ia te  equations in the sys tem (1.1) wri t ten in dimensionless  
fo rm with u0= 0 (in this case ,  it is convenient to se lec t  x / h  and p g p x / h  2 , respect ively,  as units of velocity and 

p ressu re ) ,  

' t'r (Tpo _ To ) =:  0 (6.1) , ab Pr ( T p o  __ To ) -= O, ~,'~T;,o - -  

(the p r imes  denote differentiation with r e spec t  to z). 

Boundary conditions are  

To = -~ 1 fo r  z :=  • i ;  1";,,, . . . .  i br z := 1. (6.2) 

Pa r t i c l e s  en ter  the layer  with a t empera tu re  equal to that of the upper boundary. 

The t empera tu re  distr ibutions in the gas layer  and in the par t ic le  cloud during s teady-s ta te  t r ansve r se  

motion of the additive have the fo rm 

1"o = a l [ e x p ( k l ( z  - -  1)) --  t]  + a 2 [ e x p ( k 2 ( z  - -  i)) --  l]  --  t; (6.3) 

T p o  = a l [ ( k J a b u s ) e x p ( l q ( z  - -  1)) --  t ] + a : [ ( k ~ / a b u ~ ) e x p ( k o . ( z  - -  1))--1 ] -- t, 

where 

a, ~: 2![1 --  exp (--2k,)](k3--i); a2 = 2t[1 -- c x p ( - - 2 k . ) l ( l / k a  - -  i); 

P r  a b  P r  P r  2 P r  a b  P r  , P r  2 _ I _ - - ~ - T  ; k . , =  , - - .  
k l  == 2TTU s r " 2 T T U  s " - 7  T T  ' 

k3 = [1 -- exp(--2k:) l/ [l --  exp(--2kl)l �9 [ ( a b u ~  - -  k , ) / ( a b u ~  - -  k,)J. 

In the limiting case  of suspended par t ic les  (u s = 0), we obtain f rom Eqs. (6.1) and (6.2) a ver t ica l ly  l inear  
distr ibution of the t empera tu res ,  Tp0 = T O = - z .  As is c lea r  f rom Eq. (6.3), the tempera ture  distributions in 
the gas and par t ic le  cloud are  different  f rom l inear  when the par t ic le  settl ing rate  is nonzero.  The distort ion 
of the l inear  distr ibution of gas t empera tu re  inc reases  with an inc rease  in the par t ic le  settl ing rate and also 
with an increase  in the mass  concentrat ion and relat ive heat capaci ty  of the par t ic les .  With fur ther  increase  
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in the p a r a m e t e r s  l is ted,  a tendency toward  the fo rma t ion  of a boundary l aye r  within which the main  change in 
gas  t e m p e r a t u r e  is  concent ra ted  is  noted at  the lower  boundary.  

w 7. To study the convect ive  s tab i l i ty  of an equi l ibr ium l aye r  of a med ium containing set t l ing pa r t i c l e s ,  
we cons ide r  the pe r tu rbed  f ie lds  fo r  ve loc i ty ,  t e m p e r a t u r e ,  p r e s s u r e  and pa r t i c l e  number ,  u, Up +Us, T0 + T.. 
Tp0+Tp,  p0+p, and N0+N , where  u, Up, T, Tp, p, and N a r e  sma l l  pe r tu rba t ions .  Equations fo r  the p e r t u r b a -  
t ions can be obtained f r o m  (1.1) by l inear iza t ion  over  the pe r tu rba t ions .  El iminat ing the p r e s s u r e  and the x, y 
components  of  the ve loc i t i e s  of the gas and pa r t i c l e  cloud f r o m  these  equations in the usual  manner ,  one can 
obtain equat ions for  the ve r t i c a l  components  of the pe r tu rba t ion  ve loc i t i e s  Uz(X , y, z, t) and Upz(X , y, z, t) and 
fo r  the t e m p e r a t u r e s  T(x, y, z, t) and Tp(x, y, z, t ) .  We cons ider  n o r m a l  pe r tu rba t ions  of the f o r m  

u~ = L,(z)exp [-- )~t + i(klx + k~g)]; (7.1) 
upz  = vT~(z)exp [-- )~t -- i(klx ~ k~y)]; 
I' = O(z) exp [-- ~,t + i(klx -~ k~g) ], 

Tp = Op(z) exp [-- Zt + i(klx --  k.,_y)], 

where  k i and k 2 a r e  r ea l  wave num ber s  along the x and y di rec t ions;  h =Xr + iXi is the complex  dec remen t  of 
the pe r tu rba t ions .  Taking into aecotmt the f o r m  (7.1) of the per tu rba t ions ,  we finally obtain d imens ionless  
equations for  the pe r tu rba t ion  ampl i tudes  

I t  "~'' - -  2 k ~ l ' "  - '-  / , '~r) - - -  2 . ' } ( z , " - -  ~"c) B a k':'-O -~- 

I P I e  I -2-' ~!  1 -- ~ ,--: I,,..,,. , . "  i. =:_[.,', . ,  _ _ r _ i V _ P , ~  ',." . ~."t, "]J -- "i ":'"". ', ~, - ~'i~ - 1, . . . .  ] <~I = ~'~ 
II ~ , [. 

~ s 

Y'o a b 

~ (~ - /<"~  - ( < ' ~ ' ' "  , ~--7 - ~ t ~ - ~m-" ~- ~ % = ~  

" ) r i '  
Pt' - r  - - } .  Op ~ ' 0 = O; ~ Up TT  

)~,pOh:, c,,~ = ~,  kT> 
R a = = ( l ~ - a . - - ~ .  ,u~ = -- T~. p]:- 7, l, '~ / , '7w- _. 

("7.2) 

Boundary conditions are 

v - - v ' . : =  0 - - -0  for z =  _ l; 
uz, :~ Os~ : 0 for z = t. (7,3) 

It is assumed thatperturbations of the velocity and temperature of the particle cloud vanish at the upper 
boundary of the layer. 

The boundary-value problem (7.2), (7.3) determines the spectrum of perturbation decrements and the 
stability limits for an equilibrium layer of a fluid containing added particles. The Runge-Kutta-l~lerson 
stepwise method of integration is also used to solve this boundary-value problem. 

w 8. The presence of added particles shows up primarily in the spectrum of perturbation decrements. In 
contrast to the spectrum for a layer of pure fluid and the spectrum for a layer with transverse seepage of 
fluid [9, 14], the perturbation spectrum is new considerably richer because of the appearance of perturbations 
associated with the particle cloud. As shown by calculations, however, perturbations associated wifl~ the trans- 
port medium remain responsible for the instability of the equilibrium state. 

Transverse motion of the particles leads to a considerable change in the perturbation spectrum for a 
stationary layer of pure fluid. Oscillational perturbations now appear in the spectrum; they arise as the re- 
sult of coalescence of real levels. With an increase in Rayleigh number, these complex-conjugate pairs break 
down into two real levels. Instability, as in the case of a stationary layer of pure fluid, is caused by the real 
branches of the speetrum and has a monotonic nature. 

The effect of particle settling rate on the stability of a layer is illustrated in Fig. 5, vchich shows the 
dependence of the minimum critical Rayleigh number Ra m on the particle settling rate u s (or, which comes to 
the same thing, on the Galileo number) (I>r=0.73, a =0.i, ~v=0.00452, ~-T=0.01336). Layer stability rises 
rapidly with increase in lUsl. The wavelength of the most dangerous perturbations decreases. In a layer of 
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a i r  2 c m  thick,  mot ion of wood p a r t i c l e s  a t  a ve loc i ty  ~ 20 c m / s e c  ~a = 0.1, r =0.007 cm) i n c r e a s e s  the s tabi l i ty  
b y a f a c t o r  of a lmos t  17. With an i nc r ea s e  inthe pa r t i c l e  se t t l ing ra te ,  however ,  the r a t e  of r i s e  in the m i n i m u m  
c r i t i ca l  Rayle igh  n u m b e r  s lows down (for lUsl ~ 150). 

With an i n c r e a s e  in pa r t i c l e  set t l ing ra te ,  a t h e r m a l  boundary l aye r  begins to f o r m  at  the lower  boundary 
of the l a y e r  ("blowup" of the gas  t e m p e r a t u r e  d is t r ibut ion occurs ) .  As a resu l t ,  the ef fec t ive  th ickness  of the 
s t r a t i f i ed  l a y e r  of gas  is  d e c r e a s e d  ( h e f  t < h). The c h a r a c t e r i s t i c  t e m p e r a t u r e  d i f fe rence  of 2@ r e m a i n s  f ixed 
in this case .  The c r i t i c a l  t e m p e r a t u r e  d i f fe rence  is  found f r o m  the condition (l ~- a) g~Oh~11/v~ = const, and 
the re fo re  the c r i t i ca l  Rayle igh  number ,  which is  de t e rmined  in the usual  m a n n e r  f r o m  the halfwidth h of  the 
l ayer ,  is  i n c r e a s e d  in p ropor t ion  to the d e c r e a s e  in heft, i .e . ,  to the r i s e  in lUsl. This  occu r s  as  long as  the 
p a r t i c l e s  which "blowup" the d is t r ibut ion of gas  t e m p e r a t u r e  i n c r e a s e  the th ickness  of  the t h e r m a l  boundary 
l a y e r  a t  the lower  sur face .  It  tu rns  out that  a t  high va lues  of  the set t l ing r a t e ,  fu r the r  i nc r ea se  leads  to in-  
s ignif icant  d i s tor t ion  of the es tab l i shed  dis t r ibut ion of gas  t e m p e r a t u r e  and so to a smal l  r i s e  in s tabi l iz ing 
effect .  

Intensif icat ion of the d is tor t ing  ef fec t  of p a r t i c l e s  on the d is t r ibut ion of gas  t e m p e r a t u r e  is  a l so  obse rved  
when the re  is  an i n c r e a s e  in the m a s s  concent ra t ion  a of the addit ive.  The s tabi l iz ing ef fec t  of the pa r t i c l e s  
on equi l ibr ium s tabi l i ty  i n c r e a s e s  in this case .  With an i n c r e a s e  in the m a s s  concentra t ion  a by a fac tor  of 
two f r o m  0.1 to 0.2, the m i n i m u m  c r i t i ca l  Rayle igh  number  i n c r e a s e s  f rom 770 to 1980 and the c r i t i ca l  wave 
n u m b e r  k m i n c r e a s e s  f r o m  2.19 to 2.77. 

F igu re  6 shows the dependence of the m i n i m u m  cr i t i ca l  Rayle igh number  on the Prandt l  number  and on 
the re la t ive  hea t  capac i ty  b of the p a r t i c l e s  (a = 0.1, Ga / I> r  =43,600, Tv= 0.00452). The curve  for  R a m = R a m ( P r )  
was plotted fo r  b= 2.7 and the cu rve  for  R a m = R a m ( b )  was plotted fo r  P r  = 1. With an i nc rea se  in I>randtl num-  
ber  (10 -2 -< P r  <- 102), the re  is  a reduct ion in Ra  m by a f ac to r  of m o r e  than two ( R a m ~  2000 for  l>r = 0.1 and 
Ra m ~ 1000 for  P r  = 6). However ,  convect ive  equi l ibr ium s tabi l i ty  in our  ease  is much higher  than the s tabi l i ty  
of  a pure  fluid. Stabili ty r i s e s  with an i n c r e a s e  in the re la t ive  heat  capac i ty  b of the pa r t i c l e s .  P a r t i c l e s  
having a h igher  heat  capac i ty  be t te r  a b s o r b  the t h e r m a l  pe r tu rba t ions  that  a r e  the m o s t  dangerous .  

The behavior  of the m i n i m u m  cr i t i ca l  Rayle igh  number  Ra m as  a function of pa r t i c l e  radius  (or of r e -  
laxat ion t ime  r v) is s i m i l a r  to the behav ior  of the min imum cr i t i ca l  Gra sho f  number  in the p rob l em of the 
s tab i l i ty  of convect ive  flow in a m e d i u m  containing an addit ive in a ve r t i c a l  l a y e r  (see Fig. 4). An i nc r ea se  in 
r leads to an i n c r e a s e  in equi l ibr ium s tabi l i ty  up to some l imi t ing  value r .  = 0.004 a t  which Ra  m = 3125 (a = 0.1, 
Ga = 31,830, P r  = 0.73, b = 2.7, P l/P =415). The s tabi l iz ing effect  d e c r e a s e s  when r > r . .  The c r i t i ca l  wave num-  
be r  k m i n c r e a s e s  with i n c r e a s e  in r and r e a c h e s  a va lue  of 3.1 (for r ~  0.004 and the given values  of the p r o b -  
l em p a r a m e t e r s ) ,  and then d e c r e a s e s  with fu r the r  i n c r e a s e  in r.  In con t r a s t  to the p rob lem of the s tabi l i ty  of 
s t e a d y - s t a t e  convect ive  mot ion of a med ium containing an addit ive (see Fig. 4), the i nc r ea se  in convective equi-  
l i b r ium s tabi l i ty  with i n c r e a s e  in pa r t i c l e  s ize  is a s soc i a t ed  with a d e c r e a s e  in the length of dangerous  standing 

pe r tu rba t ions .  

One should note in conclusion that  the ef fec t  of set t l ing p a r t i c l e s  on convect ive equi l ibr ium stabi l i ty  in a 
hor izonta l  l aye r  of fluid is  s i m i l a r  in many  r e s p e c t s  to the e f fec t  of t r a n s v e r s e  seepage  of fluid [9, 14, 15]. 

The author  thanks E. M. Zhukhovitski i  for  d i rec t ing  the work,  V. E. Nakoryakov and par t ic ipants  in the 
s e m i n a r s  d i r ec t ed  by him, and also A. G. Kirdyashkin  for  providing valuable  d i scuss ions  of the resu l t s .  
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HEAT EXCHANGE BETWEEN A SELECTIVELY 

EMITTING LIQUID AND A LAMINAR GAS FLOW 

IN THE PRESENCE OF AN EXTERNAL SOURCE 

OF RADIATION 

N. A. Rubtsov and A. M. Shvartsburg UDC 536.24 

An investigation is conducted in the solution of a number of practical problems of the radiative 
and combined heat exchange in nonuniform systems having widely different physical properties. 
The processes of thermal interaction between the ocean and the atmosphere have been treated 
in the paper [i], the effect of thermal radiation on the melting and solidification of semitrans- 
parent crystals has been investigated in [2], the flow of a selectively emitting gas around the 
lateral surface of an object evaporating under the action of radiative heating has been discussed 
in [3], and heat transfer from a jet to the molten mass of glass in a glassmaking furnace tank 
has been investig~ated in [4]. The radiative and combined heat exchange between a selectively 
emitting liquid and a transparent heat-conducting laminar gas flow in the case of a specified 
external thermal radiation field is discussed in this paper. The energy conservation equations 
are set up taking into account the heat transfer by radiation, convection, and molecular thermal 

conduction. A differential approximation is used in calculating the values of the radiation fluxes. 
A system of fundamental computational equations is solved by the method of finite differences 
and iterations and by the Runge-Kutta method. The results of the calculations are presented 
in the form of graphs. 

C O N V E N T I O N A L  N O T A T I O N  

Be =dpcp/g (T0-Tm)3 is the Boltzmann number; Iw =or ( T o - T m ) 3 a / ~ .  is the Ivanov number; Bux= ~xa is 
the Bouguer number; R e = d a / v  is the Reynolds number; Bi= o ~ a / X  is the Biot number; 0=(T-Tm) / (T0-Tm)  
is the dimensionless temperature; U and V are the longitudinaI and transverse dimensionless velocity com- 
ponents, respectively; U 0 is the dimensionless velocity of the unperturbed gas flow; P =p/pd 2 is the dimension- 
less pressure;  # =/~ T/~ T o is the dimensionless dynamic viscosity coefficient; E T x = E~ a/~ (T0-T~) 4 is the 
dimensionless energy density of the radiation from an absolutely black body; qx is"the di~ensionles's " radiation 
flux; qTis the dimensionless flux of heat transported by conduction; qn =qT+q is the dimensionless net heat 
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